M1.1-chloropropane

no visible change

Accept 'small amount of precipitate' or 'precipitate forms slowly'.

1

ethanoyl chloride

white precipitate

Accept 'large amount of precipitate' or 'precipitate forms immediately'.

1

[2]

M2.(a) For 2 marks at least <u>one correct reference either to M</u>, or <u>value to 5</u> decimal places required

QoL (associated with the bold statement here)

M1 Compounds $\underline{1}$ and $\underline{3}$ (butanal and butanone) have the same M_r (to 5dp) because either

It may be possible to award 2 marks if there is a clear statement about oxygen having a different precise A, in the context of the comparison

- they contain the <u>same</u> number of atoms of the same / each element
- are <u>both</u> C₄H₈O
- have the <u>same molecular formula</u>
 NB The word "similar" does not mean "the same"
- contain the same number of C, H and O atoms

M2 Compound 2 (pentane) has a different M_r (to 5dp) because **either**

- it has different numbers of atoms of different elements
- is C₅H₁₂ / only contains C and H
- <u>different molecular formula</u>
- does not contain oxygen (atom) / C=O

2

(b) WithTollens' (reagent)

M1 silver mirror

OR black solid/precipitate

(NOT silver (mirror) precipitate)

M2 (stays) colourless

OR no change / no reaction

OR no silver mirror

With Fehling's (solution)

M1 Red solid/precipitate

(Credit orange or brown solid)

M2 (stays) blue

OR no change / no reaction

OR no red solid

OR no (red) precipitate

N.B No mark is awarded for the reagent

If no reagent given allow 1 mark for a consistent statement of M1 and M2

For M2, ignore "nothing (happens)" And ignore "no observation"

2

[4]

M3.Test bromine (water) / iodine

Accept 'Br₂' or 'bromine in a named solvent'.

Do not accept 'Br'

Use of UV light, CE (lose next mark as well)

1

1

Observation orange / yellow / (red-)brown to colourless

Must have correct reagent to score this mark.

For I₂, allow red-brown / purple to colourless.

[2]

M4.(a) M1 concentrated sulfuric acid OR c(onc) H₂SO₄

If no reagent or incorrect reagent in **M1**, **CE= 0** and no marks for **M2** or **M3**

M2 (cream solid) turns orange

OR orange / red / brown fumes / gas / vapour

If dilute sulfuric acid OR "aq" (alone) CE=0

M3 (yellow solid) turns black

OR purple fumes / gas / vapour

OR correct reference to H₂S observation (eg bad egg smell)

If H₂SO₄ / sulfuric acid given but not stated whether dilute or concentrated, penalise **M1** and mark on for **M2** and **M3**If incorrect formula for the acid, penalise **M1** but mark **M2** and **M3**

OR as an alternative

M1 concentrated ammonia OR c(onc) NH₃

If NH₃ / ammonia / aq ammonia given, but not stated as concentrated **OR** if dilute ammonia given, penalise **M1** but mark on for **M2** and **M3**Ignore "partially" and ignore "clear" in **M2**

M2 (cream solid) dissolves / solution formed

M3 precipitate remains / does not dissolve / insoluble **OR** no reaction / no change / (yellow solid) turns to white solid

If incorrect formula for ammonia, penalise **M1** but mark **M2** and **M3**

In M3 for ammonia.

ignore "nothing (happens)".

ignore "no observation".

(b) M1 AgNO₃ **OR** silver nitrate **OR** any soluble silver salt

If no reagent **OR** incorrect reagent in **M1**, **CE= 0** and no marks for **M2 OR M3**

M2 white precipitate or white solid / white suspension

An insoluble silver salt OR Tollens' **OR** Ag **OR** ammoniacal silver nitrate or HCI / AgNO₃ **CE= 0** for the clip.

M3 remains colourless \emph{OR} no reaction \emph{OR} no (observed) change \emph{OR} no precipitate

For M1

Credit acidified (**OR** HNO₃) silver nitrate for **M1** and mark on. If silver ions or incorrect formula for silver nitrate, penalise

3

M1 but mark M2 and M3

Credit alternative test for nitrate ions

For M2

Ignore "cloudy solution" OR "suspension".

For M3

Ignore "nothing (happens)".

Ignore "no observation".

Ignore "clear".

Ignore "dissolves".

(c) M1 Br₂ **OR** bromine (water) **OR** bromine (in CCl₄ / organic solvent)

If no reagent or incorrect reagent in **M1**, **CE= 0** and no marks for **M2** or **M3**

Either Order

M2 (stays) Orange / red / yellow / brown / the same

OR no reaction OR no (observed) change

OR reference to colour going to cyclohexane layer

No credit for combustion observations; CE=0

For M2 in every case.

Ignore "nothing (happens)".

Ignore "no observation".

Ignore "clear".

M3 decolourised / goes colourless / loses its colour

With bromine (water)

For M1, it must be a whole reagent and / or correct formula.

If oxidation state given in name, it must be correct.

For M1 penalise incorrect formula, but mark M2 and M3

OR as an alternative

Use KMnO₄/H₂SO₄

M1 acidified potassium manganate(VII) or KMnO₄/H₂SO₄

OR KMnO₄/ H⁺ OR acidified KMnO₄

M2 (stays) purple or no reaction or no (observed) change

With potassium manganate(VII)

For M1

M3 <u>purple to colourless</u> solution **OR** goes <u>colourless</u>

If "manganate" or "manganate(IV)" or incorrect formula or no acid, penalise **M1** but mark **M2** and **M3**

Credit alternative test using **iodine** (for **M1**)

M2 (brown) to purple or accept no change, M3 colourless

Credit alternative test using concentrated H2 SO4

M2 no change, M3 brown

Credit alkaline / neutral KMnO₄ for possible full marks but **M3** gives brown precipitate or solution goes green.

3

3

(d) M1 Tollens' (reagent) OR ammoniacal silver nitrate OR a description of making Tollens'

(Ignore either AgNO₃ or [Ag(NH₃)₂†) or "the silver mirror test" on their own, but mark M2 and M3)

M2 silver mirror

OR <u>black solid / precipitate</u> (Ignore silver precipitate)

M3 (stays) colourless or no reaction or no (observed) change

If no reagent or incorrect reagent in **M1**, **CE= 0** and no marks for **M2** or **M3**

For M3 in every case

Ignore "nothing (happens)". Ignore "no observation".

Alternative using Fehling's (solution)

M1 Fehling's (solution) or Benedict's solution

(Ignore Cu²⁺(aq) or CuSO₄ on their own, but mark M2 and M3)

M2 Red solid / precipitate (Credit Orange or brown solid)

M3 (stays) blue or no reaction or no (observed) change

With potassium dichromate(VI) For M1

If "dichromate" or "(potassium) dichromate(IV)" or incorrect formula or no acid, penalise **M1** but mark **M2** and **M3**

Alternative using K₂Cr₂O₇/H₂ SO₄

M1 acidified potassium dichromate or K₂Cr₂O₇/H₂SO₄

OR K₂Cr₂O₇/H⁺ **OR** acidified K₂Cr₂O₇

M2 (Orange to) green solution OR goes green

M3 (stays) Orange or no reaction or no (observed) change

For M3

Ignore dichromate described as "yellow" or "red".

With potassium manganate(VII) For M1

If "manganate" or "(potassium manganate(IV)" or incorrect formula or no acid, penalise M1 but mark M2 and M3

Alternative using KMnO₄ /H₂ SO₄

M1 acidified potassium manganate(VII) or KMnO₄ /H₂ SO₄

OR KMnO₄ /H * OR acidified KMnO₄

M2 purple to colourless solution OR goes colourless

M3 (stays) purple or no reaction or no (observed) change

Credit alkaline / neutral KMnO₄ for possible full marks but **M2** gives <u>brown precipitate</u> or solution goes <u>green</u>.

[12]

3

M5.(a) If 2 stage test for one compound, award no marks for that compound, eg no

mark for ROH or RX to alkene then Br₂ test. If reagent is wrong or missing, no mark for that test; if wrong but close/incomplete, lose reagent mark but can award for correct observation. In each test, penalise each example of wrong chemistry, eg AgClr₂

```
propan-1-ol
     acidifiedpotassiumdichromate
     sodium
     Named acid + conc H<sub>2</sub>SO<sub>4</sub>
     named acyl chloride
     PCI<sub>5</sub>
                                                                    M1
     (orange) turns green
     effervescence
     Sweet smell
     Sweet smell /misty fumes
     Misty fumes
                                                                    M2
                                                                                 1
propanal
     add Tollens or Fehlings / Benedicts
     acidifiedpotassiumdichromate
      Bradys or 2,4-dnph
            if dichromate used for alcohol cannot be used for aldehyde
                                                                    M3
     Tollens: silver mirror or Fehlings/ Benedicts: red ppt
      (orange) turns green
     Yellow or orange ppt
```

propanoic acid Named carbonate/ hydrogencarbonate water and UI (paper) Named alcohol + conc H₂SO₄ sodium or magnesium PCI₅ if sodium used for alcohol cannot be used for acid M5 effervescence orange/red Sweet smell effervescence Misty fumes if PCI₅ used for alcohol cannot be used for acid M6 1 1-chloro propane NaOH then acidified AgNO₃ $AgNO_3$

If acidification missed after NaOH, no mark here but allow mark for observation

M7

1

white ppt

white ppt

(b) oxidation (of alcohol by oxygen in air)

M1

1

absorption at <u>1680 -1750</u> (due to C=O)

Must refer to the spectrum

M2

1

comparison of polarity of molecules or correct imf statement:propanone is less polar OR propan-2-ol is more polarOR propanone has dipole-dipole forcesOR propan-2-ol has hydrogen bonding

М3

1

about attraction to stationary phase or solubility in moving phasePropan-2-ol has greater affinity for stationary phase or vice versaOR propanone is more soluble in solvent/moving phase or vice versa

M4

1

[12]

M6.(a) M1 Ester **1**

If Ester 2, can score M3 only.

1

(R) C - O - CM2 peak at $\delta = 4.1$ due to H

When marking M2 and M3, check any annotation of structures in the stem at the top of the page.

1

	M3	(δ = 4.1 peak is) quartet as <u>adjacent / next to / attached to CH₃</u>
	M4	Other spectrum quartet at δ = 2.1-2.6 (or value in this range)
(b)	M1	Quaternary (alkyl) ammonium salt / bromide
	M2	CH₃Br or bromomethane Penalise contradictory formula and name. 1
	M3	Excess (CH₃Br or bromomethane) Mention of acid eg H₂SO₄ OR alkali eg NaOH loses both M2 and M3.
	M4	Nucleophilic substitution Can only score M3 if reagent correct. Ignore alcohol or ethanol (conditions) or Temp.
(c)		
		Bromine Acidified KMnO ₄
		(penalise Br but mark on) (Penalise missing acid but mark on)
		<u> </u>

Wrong reagent = no marks.

If bromine colour stated it must be red, yellow, orange, brown or any combination, penalise wrong starting colour.

Benzene no reaction / c olour remains / no (visible) change no reaction / colour remains / no (visible) change	olour remains remains / no (visible) / no (visible) change
--	--

Ignore 'clear', 'nothing'.

Allow colour fades slowly.

Allow 'nvc' for no visible change.

cyclohexene (Bromine) (Acidified KMnO₄) decolourised

[11]

1

1

M7.Identification of acid by suitable method eg named indicator, named carbonate, specified reactive metal

Ignore any reference to the smell of the ester.

1

with expected results

Do not allow the use of any instrumental method eg i.r. or n.m.r.; must be a <u>chemical</u> test.

1

Identification of alcohol by suitable method eg oxidation by acidified potassium dichromate(VI)

1

1

with expected results

[4]